Knowledge Graph or Vector Database… Which is Better?
Adam Lucek
16.7K subscribers
Subscribe
2K 告诉我谁更好?SEMANTIC KNOWLEDGE GRAPH OR traditional RAG setups?
Resources:
Share
50,234 views Dec 23, 2024 #ai #datascience #programming
In the evolving landscape of AI and information retrieval, knowledge graphs have emerged as a powerful way to represent complex, interconnected information. But how do they work, and are they better than traditional RAG setups?
Resources:
Notebook Repo - https://github.com/ALucek/GraphRAG-Br...
GraphRAG - https://microsoft.github.io/graphrag/
GraphRAG Paper - https://arxiv.org/pdf/2404.16130
GraphRAG Case Study from LinkedIN - https://arxiv.org/pdf/2404.17723
Unifying Large Language Models and Knowledge Graphs - https://arxiv.org/pdf/2306.08302
The Ultimate Guide to Fine-Tuning LLMs - https://arxiv.org/pdf/2408.13296
Google’s Knowledge Graph Introduction - https://blog.google/products/search/i...
Leiden Algorithm - https://en.wikipedia.org/wiki/Leiden_...
Chapters:
00:00 - Why RAG Fails
01:54 - What is a Knowledge Graph?
03:35 - Knowledge Graphs & LLMs
05:39 - Introducing GraphRAG
06:17 - Main Components of Knowledge Graphs
07:39 - Setting up GraphRAG
11:10 - Data Flow: Overview
12:13 - Data Flow: Entity & Relationship Extraction
16:40 - Data Flow: Community Clustering
18:28 - Data Flow: Community Report Generation
20:11 - Observing Final Knowledge Graph
22:12 - RAG Setup
23:58 - RAG: Local Search
27:10 - RAG: Global Search
30:23 - RAG: DRIFT Search
35:06 - Comparing GraphRAG vs Regular RAG
36:59 - Comparison Discussion
ChatGPT 说:
已思考几秒
Adam Lucek 深入剖析了知识图谱(Knowledge Graph)与传统向量数据库(用于RAG)的优劣,特别介绍了 GraphRAG 框架。他指出:
🔍 关键解析
1. RAG 的局限性
- 传统 RAG 利用向量搜索提取上下文,但常常返回不准确或过于冗余的文本段,缺少结构化语义能力。
2. 什么是知识图谱
- 知识图谱通过构建实体节点与关系边组成复杂图谱,可直接执行逻辑查询(如“谁的出生地在美国且与X有合作”),具有更高的语义和推理能力。
3. GraphRAG:结合优势
- GraphRAG 结合向量搜索与知识图谱,先使用向量找到相关实体,后通过图谱明确关系逻辑,实现更精准、可解释的查询youtube.com+9youtube.com+9bit.ly+9。
4. 实践与性能对比
- 在实际案例中,GraphRAG 展示出更高的准确率、响应速度和逻辑可靠性,尤其适用于需要复杂推理或结构化内容生成的场景。
✅ 总结建议
- RAG + 向量数据库:适合快速文本检索和生成,不需要复杂逻辑时最便捷。
- Knowledge Graph 或 GraphRAG:更适合语义理解、逻辑查询、复杂关系推理等任务,是“结构化 + 推理驱动”的现代AI系统的重要进化方向。
📌 如果你重视 语义信任、逻辑可解释、细粒度控制,那么知识图谱(特别是 GraphRAG)比传统 RAG 架构更优。 unbequem
源
Comments (0)
No comments